
CourseHub: A MUGS Design

Alejandro Diaz, Katharina Gschwind, Dylan Lewis
{addiaz15, gschwind, drlewis}@mit.edu

Rec. Instructor: Steve Bauer, 2pm, Rec12

May 2019

Contents

1 Introduction 2

2 Overview 2
2.1 High Level Description/Intention . 3

3 File System 3
3.1 Student and Group Directory Capacities . 3

4 Software Classes 3
4.1 Staff Class . 4
4.2 Student Class . 4
4.3 Assignment Class . 4
4.4 Submission Class . 5

5 Bootstrapping 5

6 Grade Database 6
6.1 Staff Grading . 6
6.2 FOR USE BY SERVER ONLY . 6
6.3 FOR USE BY CLIENTS VIA SERVER . 7
6.4 Grade Reporting . 7

6.4.1 Notification On Grading . 7

7 Permissions 8

8 Student Group Work and Assignments 8
8.1 Design Project Group Creation . 8
8.2 Student to Student Sharing . 8
8.3 Rank Ordered Voting . 8

9 Individual Work and Assignments 9

10 Client Server Transfer Protocol 9

11 Locking and Concurrency 9

12 Submission File Type/Size Checking 10

13 Security 10

14 General System Assumptions 10

15 Use Cases 10

16 Evaluation 11
16.1 What is the communication overhead of your system? . 11
16.2 On average, how long does it take a student to upload an assignment to the server? 11
16.3 On average, how long does it take for Gradescope grades to be transferred to the server? . . . 11
16.4 How much data are you storing on the server? . 11
16.5 What parts of your system limit scale, and what are those limits? 11
16.6 How long does it take your system to deliver all student grades to the Course Lecturer? . . . 12
16.7 How long does it take for a file transfer to be killed, if requested? 12
16.8 How long does it take to create all student accounts at the beginning of the semester? 12
16.9 How usable will users find your system? . 12
16.10Additional Metrics . 12

1

17 Future Work 12

18 Conclusion 13

19 Author Contributions 13
19.1 Alejandro Diaz . 13
19.2 Katharina Gschwind . 13
19.3 Dylan Lewis . 13

20 Acknowledgements and References 13

1 Introduction

MIT is a leading technological university, but it lacks
a coherent system for courses that supports student
submissions and grading in a comprehensive manner.
MIT has decided to update 6.033’s (Computer En-
gineering) grading and submissions system necessary
for the course of 400 students with many different
recitations, tutorials, and staff. Provided the system
is flexible enough, MIT would like to extend the sys-
tem on a campus wide scale to other courses.

On a system-wide scale the current 6.033 system’s
problems include:

1. Accommodating the specific hierarchy and lay-
out of 6.033 (WRAP instructors and TAs) while
being flexible enough to work for other course
structures (e.g. labs, recitations).

2. Differentiating between students and staff with
different permissions and capabilities that are
related to their identities and memberships in
groups.

3. Allowing file submissions of group and student
work and handling concurrency issues.

We propose a novel system, CourseHub, that corrects
these problems and allows students and staff to more
effectively perform their tasks and interface with one
another in a clear manner. Other problems Course-
Hub addresses are: selection of design groups, sharing
work between students and staff, mistaken submis-
sions, handling deadlines, handling grading policies
and maintaining full history of student submissions
while maintaining current submission selections.

Our main design goals are correctness, modularity,
and abstraction. Correctness is emphasized because
first and foremost our system is designed to fix the
problems of the current system and minimize new is-
sues. In some cases we tradeoff simplicity in favor of
correctness in order to correctly address edge cases.
We emphasize modularity and abstraction so our sys-
tem can accommodate other courses and note that

courses could be implemented in parallel on a server
if given more resources. Modularity is clear in the
organization and division of CourseHub which is
composed of the following modules: a file system,
a grade database, four classes that organize course
data. These modules are independent, and interact
internally on the server.
Correctness is emphasized through a well-defined
server side transfer protocol, a locking discipline for
file uploads and reads, and granularity in member
permissions to name a few. Abstraction is most ap-
parent in our division of pertinent course information
into separate classes. We begin by delving deeper
into the overall system, the modules of the system,
and the specific implementations. We end by delin-
eating use cases and evaluating the system based on
our design goals and other important metrics. The
following figure gives a more general view of our sys-
tem.

2 Overview

Figure 1: Overall System Diagram, delineating sys-
tem modules and their channels of communication
and data flow

2

2.1 High Level Description/Intention

CourseHub is composed of one server running one
multi-threaded program on its 10 cores. Our sys-
tem stores the data from our 400 students and the
coursework they prepare on disk in the server. As
our server runs its processes, it loads the appropriate
data it needs from disk to memory and to the cache
for performance. These latter operations are auto-
matically handled by the OS Kernel. See Figure 1
for general system flow/organization.
CourseHub’s user interface with students and staff is
a website. Through this website, CourseHub utilizes
student and staff specific functions, but students and
staff are never allowed access to the server, including
the course-related data stored there. This mitigates
security concerns by tightly restricting access to files
and directories, minimizing the system’s surface area
of potential attacks. We identify students and staff
accessing the course webserver using MIT-distributed
user names called Kerberoses/Kerbs. These provide
secure permission allocation, as students and staff
must login using these IDs.
The course admin has direct access to course data for
logistic and administrative purposes. Course admin,
however, are not clients to the webserver. Instead,
admin must log in at the OS user level to the server,
and interact with CourseHub from the terminal.

3 File System

Figure 2: File System Hierarchy for 6.033 using MFS
and stored on disk

We implement a file system hierarchy that utilizes
the pre-existing MFS (MIT File System) to accom-
modate: differentiating between recitations, tutori-
als, and students. This file system allows for the cre-
ation of different groups, and groups within groups

(For 6.033 it would look similar to Figure 2). For the
purposes of 6.033, an example student path might
look like /6.033/Rec/Tut/DPGroup/Stud This path
makes sense in the case of 6.033 because the course
is partitioned into such subgroups and makes for
straightforward organization of the course. This in-
frastructure can easily accommodate the needs of
other courses to create more or less groups and groups
within groups as aforementioned, a design decision
that implements modularity and abstraction. For ex-
ample, in order to store another course a similar hier-
archy could be made in the same root directory with
another course directory. Every individual student’s
directory stores the student’s submissions to assign-
ments. A student group’s directory stores the group’s
submissions and shared files.

3.1 Student and Group Directory Ca-
pacities

For 6.033 we recommend that student directories
have a limit of 20MB and group directories have a
limit of 700MB for 6.033, but these limits can be mod-
ified for other courses. These numbers are derived
from the fact that there are 400 students in 6.033
each with their own directory(400 Ind. Groups) and a
group directory (130 project groups). 20MB is plenty
for individuals submitting text files and 700MB for
DP groups allows 100MB video uploads while leaving
space for other files. Altogether this means allocat-
ing 99GB to 6.033 which is well within the 240GB
storage capacity of disk.
(400 students * 20MB) + (130 Project-Groups *
700MB) = 99GB

4 Software Classes

Figure 3: Software Classes and Attributes used to
store pertinent system-wide information

For clients of the course, the system operates as a
black box. They do not interact directly with any of
the data on the server. Instead they interact with a

3

website, where the server offers them functions that
they may use.
To implement this black box system, CourseHub uti-
lizes the following data abstractions to organize its
functionality. First, we introduce abstractions to rep-
resent the types of clients of our system. Clients are
either staff or students of the course. This identity
determines what functions are available to them. For
example, a staff member can grade a student’s work,
whereas a student cannot.
We add two more abstractions to this set of ”classes”,
the assignment class and the submissions class, to or-
ganize this data and its metadata in our server.
These classes grant CourseHub high modularity, as
individual classes’ may be implemented and modified
without impacting the remaining classes.
Furthermore, this design contributes high flexibility
to the system, as it gives a lot of freedom to course
admin in establishing staff to student relationships to
handle many different courses’ hierarchy.

All student and staff objects are stored locally on
the server’s disk in student and staff hash table
databases respectively. Each database hashes every
member’s kerb to the remainder of their information
(constant time lookup). Assignment objects are sim-
ilarly stored in their own hash table on disk using ID
as the hash. To reference any attributes of any class
see Figure 3.

4.1 Staff Class

A Staff object represents an individual staff member,
and is created by the admin from the Staff Class on
their addition to the course. A staff object has the
following attributes:

1. Kerberos ID

2. Staff Name

3. Permissions Vector

The Kerberos ID allows secure staff member identifi-
cation. The Staff Name provides clarity. The permis-
sions vector enumerates all directories staff has access
to. For example, a staff member may be recitation
instructor 11 who should have access to the work of
all students in recitation 11. They would then have
recitation 11 directory in their permissions vector
thereby granting them access to all student and group
directories beneath directory recitation 11. Staff can-
not access the data stored in directories that are not
nested within the directories in the permissions vec-
tor.

Staff members are added and removed from the sys-
tem by the admin of the course either singly or in
bulk by passing CourseHub a csv file with the staff
members’ names and kerberos’.

4.2 Student Class

A Student object represents an individual student,
and is created upon their addition to the course. A
student object has the following attributes:

1. Kerberos ID (unique identifier)

2. Student Name

3. Path (path to student directory)

4. Group Kerb ID

5. Group Path

The Kerberos ID allows us to identify the student
uniquely.
The student name provides greater clarity to staff.
The path allows quick navigation to the student di-
rectory where their individual submissions are stored.
The Group Kerb ID pertains to the student’s group.
This attribute is initially empty, when the student
has not yet been assigned to a group. The updat-
ing of this attribute is specified in Section 8.1 De-
sign Group Creation. The group path gives a link to
the student’s group directory for quick navigation to
group work given the student’s object.

4.3 Assignment Class

We introduce the assignment course as a means of
representing individual assignments specified by the
admin and/or staff that helps us handle the logistics
of running an MIT course. Each assignment object
has the following attributes:

1. Assignment name

2. Assignment ID

3. Type - Whether it is a group or individual as-
signment

4. Peer Shared Boolean

5. Due Date

6. Lateness Policy

7. Course Weight

8. Allowed - Allowable submission file types (e.g.
.pdf, .mov)

4

Assignment ID is a unique assignment key. Contrary
to the ID, the assignment name can be changed.
Type determines whether the submission is stored in
the individual or group directory.
Peer Shared Boolean determines whether the assign-
ment is peer shared.
Due Date has the form MM/DD/YYYY.
The Lateness Policy is a pointer to a function which
CourseHub can call. This function take as input the
due date of the assignment, the date of a student’s
submitted assignment, the grade the student has re-
ceived for the assignment, and returns the grade for
the assignment when accounting for lateness. This
attribute allows for a course to account for different
lateness policies for different assignments.
The Course Weight attribute represents the individ-
ual assignment weight for the overall course’s final
grade which enables student grade appraisal.
The Allowed attribute specifies the permitted file
types for an assignment.

One assignment object maps to exactly one assign-
ment. Assignment descriptions or any files that
should be available for students to complete the as-
signment are treated as data and information con-
tained within the UI of the webserver, and are held
as resource files in the UI resources folder in server
storage.

4.4 Submission Class

The Submission class represents and organizes the
student’s/group’s submission to an assignment. As
with the rest of our system, staff and students do not
directly modify the submission objects; instead they
rely on the functionality we provide them via the web
interface, which the server carries out. A submission
object is a .txt file that contains the metadata below,
and is located in the directory of the key kerb it be-
longs to.

Groups/Individuals can ”Submit” a submission as
soon as the corresponding assignment object is cre-
ated. A submission object for all relevant kerbs is
created upon an assignment creation, so that staff
can grade tasks to which students did not submit
any files. For example, staff can grade a student’s
recitation participation without a student submis-
sion. Each Submission Object has the following
attributes:

1. Assignment ID

2. Key Kerb

3. Submission History: List of Snapshot IDS w/
Timestamp

4. Current Submission

5. Grade Struct

6. Comments for Submission

Assignment ID maps the submission to the corre-
sponding assignment. This enables automated file
type checking during submission, staff downloading
of all submissions to an assignment, late policy check-
ing, etc. Key Kerb is the kerb representing either a
student or group kerb.
Submission History tracks all previous versions of a
submission. Every entry contains a unique snapshot
ID and timestamp taken upon each submission, as
well as the specific individual kerb that committed
the submission upload. This kerb is not the same as
the group’s kerb. The unique snapshot of a submis-
sion can be used to revert an old file to its state at
the time of submission.
Current Submission is a pointer to the submission
history entry which should be graded.
Grade Struct tracks the grades this submission has
received from all staff who have graded it and maps
the staff kerb to a tuple of student kerb and the staff
grade for the individual student. No grades or com-
ments for any submission object are visible to stu-
dents or other staff members until a staff member
publishes the whole assignment’s grades.
The comments attribute is a dictionary mapping
staff-kerberos to the .txt file (or possibly an audio file
annotation) with that staff-kerberos’ submitted com-
ments. A .txt file for a staff’s comments is submitted
via the website and stored in the Key Kerb directory
(txt, audio or other file types can be submitted, but
they will not contribute to the directory size limit
we enforce for students). Subsequent comments for
the same staff member overwrite the previous com-
ments. Thus commenters can work independently on
the same submission object.

5 Bootstrapping

The admin of the system must bootstrap the Course-
Hub server. First the admin sets up the server’s file
system via terminal. This allows them flexibility in
organizing class data. Then the admin has to launch
the CourseHub program. We assume that the admin
starts with a server that no one else can SSH into
to minimize security flaws. Admin then pass in a
CSV file of all staff members’ kerbs, names, and per-
taining directories (e.g. ./recitation 12) to create all

5

staff objects for the class. The ”permissions vector”
is updated according to the directories, which allows
admin to set up recitation groups with potentially
multiple recitation team members.

Once staff is added, the admin can add students
to the course. First they pass in a CSV file of all
students’ kerbs and their names, which creates all
student objects. CourseHub then automatically and
evenly distribute students’ individual directories at
the lowest level of directories, and update the stu-
dents’ path attributes accordingly. Admin can also
specify directories for students in the third column if
needed. The initial terminal bootstrapping of roughly
30 directories for tutorials and recitations seems rea-
sonable; more importantly this step allows admin
to make highly specialized course structures to fit
their needs, which emphasizes correctness in respect
to flexibility. Using CSV files to initialize students
and staff is simple and the details of the implemen-
tation are abstracted away by the system for ease of
use. For a time estimate see Section 16.10 Additional
Metrics.

6 Grade Database

Grades are contained in a database to enforce modu-
larity and thereby distribute CourseHub across mod-
ules that each serve a focused and well-defined pur-
pose. The grade database maintains a cohesive struc-
ture of all grades in the course, and can be used to
quickly render information about all grades for as-
signments from all students in the course to the gran-
ularity of a single student submission. Staff member
permissions determine what grade database informa-
tion is accessible, addressing any concerns of main-
taining student’s privacy.
Maintaining the hash table structure of the grade
database separated from the class objects and file
system keeps our system modular, enhances perfor-
mance from utilizing the constant lookup time of a
hash table, and minimizes the complexity of the im-
plementation for each module in CourseHub. This
facilitates CourseHub comprehension and use, as op-
posed solely maintaining grades within Gradescope
and the file system. We tradeoff constantly main-
taining current grades that are stored in the Grade-
scope and file system with this centralized database
that updates at times that are most necessary such
immediately before notification of posted grades and
at least twice a day for any grade modifications. This
tradeoff allows us to provide the ease of use for staff
and students to extract grades without any issues and

to enhance modularity of our system by maintaining
a module on the server with a well-defined purpose
of storing all grades.

6.1 Staff Grading

Many assignments are submitted and graded on
Gradescope. For a submission that is graded on
MUGS, there is a submission object present either in
a group directory (such as a group assignment) or an
individual student’s directory (such as an individual
assignment). Whenever a staff member grades the
submission via the website, its grade attribute gets
updated with that grade. For a group assignment all
students can receive differing grades depending on the
assignment grading scheme. For example, the grade
attribute for a group assignment contains 3-4 grades,
one corresponding to each student. See Section 4.4
Submission Class for staff comment information.

Certain assignments receive multiple grades from
multiple members of staff. In this situation, the grade
we put in the student’s grade vector in the grade
database is the result of the weighted average of the
grades given by the graders. The averages for each
grader are determined by the assignment writeup.

For late submissions, we add the grade to the
database with the lateness penalty applied. This
step happens for Gradescope and grades stored
on MUGS before the grades are updated in the
Grade Database. GradeHub accounts for ill-
nesses and extenuating circumstances by calling
studentGradeException() (described below). Be-
cause grades reside in either Gradescope or MUGS,
the current grades in the grades database are up-
dated whenever the server calls addMUGSGrades()
and addGradescopeGrades() (described below).

Our grading database comes equipped with a func-
tional interface that the server utilizes for processes
involving the Grade Database, Gradescope, and
MUGS.

6.2 FOR USE BY SERVER ONLY

studentGradeException(studentKerb, assign-
ment) - Staff enters parameters via the website. If
the staff has permission for the student kerb then the
specific kerb becomes exempt from the lateness policy
for a specific assignment when the grade database is
being updated. Staff then use their existing ability to
edit grades on MUGS via the website or Gradescope
as needed.

6

The server uses these next 2 functions automatically
whenever it pulls from Gradescope or the file sys-
tem right before notification of grading, otherwise,
the server updates grades 2x a day to accommodate
late submissions or modified grades. These daily pulls
occur when expect to have low server traffic, 2AM ET
and 2PM ET to prevent overloading the network.
addGradescopeGrades(CSV) - updates the as-
signment grades from Gradescope in the grades
database. Any recent changes to grades pulled from
Gradescope in the database are reflected on the CSV
returned from the call to pullGradescopeGrades().
The server can compare the CSV constructed from
grabGradeReport() (description below) for the entire
course’s (which reflects all grades currently stored in
the grades database) relevant assignments, against
the CSV from pullGradescopeGrades(). If any
grades are different for any of these assignments, we
update the grades in the grades database with the
grade on the CSV file from pullGradescopeGrades().
(see Grades Database Figure)
addMUGSGrades() - updates grades in grade at-
tributes contained in student submissions objects for
all assignments. Similar to the process described
above, the server compares current grades for an as-
signment for the whole course (from the CSV re-
turned from grabGradeReport()) against the grades
returned by in the file system. If there is a disagree-
ment, the grade database grade is replaced by the one
in the file system. (see Figure 4)

Figure 4: Grade Database with server processes

6.3 FOR USE BY CLIENTS VIA
SERVER

grabGradeReport(assignmentIDs, directo-
ryID) - Returns a CSV file containing the staff

or student requested grades but the client only sees
the grades that their permissions permit them to
see. The data to be displayed on the CSV is ex-
tracted from the current grades present in the grades
database. Students can only see the grades for their
entire grade vector up to the most recently admin
published grade or specific grades contained within
their grade vector. Additionally a column is added on
this CSV that has current student final grade aver-
ages as calculated from the course weighting attribute
for each assignment. This allows staff members to
appraise individual students, groups of students, or
the entire course (depending on their permissions).
Students may assess their own performance as well.

6.4 Grade Reporting

We provide a function for downloading the assign-
ment specific submission objects from a specified di-
rectory:

downloadAssignmentSubmissions (directo-
ryID, assignmentID) - Checks user permissions
when user sends this request to the server via the
web interface. Downloads all the snapshots corre-
sponding to the specific assignment that are within
the directory, onto the client’s machine. The server
sends this data to the client’s machine to be down-
loaded.

6.4.1 Notification On Grading

We notify students on a course-wide basis when
grades for an assignment become available, and in-
dividually when a change has otherwise been made
to a grade. For both instances the student is only
notified and can can only view the grade if the admin
has published the grades for the assignment. Grade-
hub provides these two types of notifications.

Course-wide notification of a grade release: The ad-
min determines when an assignment is ready to have
its grades published. Gradehub then automates an
email to all students to their kerberos@mit.edu noti-
fying them of the update, and makes the grades for
the assignment available to everyone.

Regrades or grades of late submissions: students are
notified via email using their kerb either at 2am or
2pm when the grades database is automatically up-
dated. Students are given access to the grade (given
the admin has decided to publish the grades).

7

7 Permissions

CourseHub keeps track of member permissions inde-
pendently from MFS via the student and staff classes.
CourseHub relies on MIDS (MIT ID Service) to pro-
vide a secure way of identifying users and allocating
permissions. Students have access to the files and
submissions in their directories only via the website,
they do not have direct access. Staff can access the
student and group directories that are within their
permissions (e.g. students in their recitation), but
only through the website. Admin have direct access
to the entire file system, grade database, and software
class objects.

8 Student Group Work and As-
signments

Section 3 File System describes how group work is
stored on the server. Section 4 Software classes de-
scribes how access to a group directory is granted.
A group directory is not directly accessible. Instead,
our server interfaces with the file system and pro-
vides the appropriate functions for members to inter-
act with the directory. For example, the server allows
students to download existing files, upload files, make
or update a submission (locking issues are covered
later). This design decision trades system simplicity
for abstraction and correctness. We introduce over-
head in implementing the system, but can thereby
abstract away details of data storage from clients,
simplifying the user experience. We thereby also en-
sure correctness, as we limit access to course data,
prohibiting clients from corrupting each others’ data
or viewing data beyond their permissions as a mem-
ber.
We utilize the pre-existing MSS (MIT Sync Ser-
vice) to synchronize asynchronous updates by differ-
ent group members within a directory. MSS already
allows for the client download of files, editing of the
files on a personal computer and uploading to update
the server’s file. We maintain these functionalities.

A conflict arises if a client tries to update the server’s
file after the file has been modified with a timestamp
that occurred after the client first downloaded the file.
In this case the client cannot upload their changes and
must re-download the file, re-edit, and submit the new
file to update the server file.

8.1 Design Project Group Creation

Coursehub supports student project group formation.
A student group can be created by a staff member.
The staff member must have permission to access the
information of all students they want to group to-
gether. For 6.033, this allows the system to enforce
that the students working on a 6.033 Design Project
together are within the same recitation. Students
email their staff member (in this case recitation TAs)
their grouping preferences and then staff enters the
groups to CourseHub. Once approved, a group di-
rectory is created in the lowest file system directory
level not including the student directories (tutorial
group in our case). Then the links between the tu-
torial directory and the students are broken and stu-
dent directories are placed in the design group direc-
tory, altogether taking milliseconds. The student’s
attribute ”path” must be updated and a new group
kerb is generated for the directory that is attributed
to all member students. This update keeps the file
system strictly organized and facilitates admin use.

8.2 Student to Student Sharing

We support peer-review based assignments which re-
quire students to view each others’ submissions. Such
an assignment must have their Peer Share Boolean
attribute set to True. Then students enter the kerb
and assignment name in order to access and down-
load the specific submission from another student.
So that students cannot simply access all assignments
staff must specify which directories students have ac-
cess to. For example staff specifies that student kerb
drlewis has access to directory Recitation 9 for assign-
ment 10. In this case drlewis has access to the cur-
rent submissions for the specific assignment 10 that
are within this directory.

8.3 Rank Ordered Voting

We include support for students to rank or essen-
tially grade the work of other groups. The instructor
marks this as an assignment that is peer-shared via
the peer shared attribute in the assignment class, al-
lowing students to search for the submissions of other
students and download them, and submit comments,
and grades/ranks, for the assignment. We give the
students the ability to rank one time per peer shared
assignment. The student’s rankings are submitted
via the website and the votes appear for all groups in
the course to the staff (the tally totals for the groups
are displayed as well). The staff awards credit to stu-
dents by giving them a participation grade for the
assignment. This implementation of rank ordered

8

voting makes a design tradeoff in simplicity in fa-
vor of storage management and flexibility. This one
peer sharing functionality can enable students to view
all other submissions for an assignment, one specific
other student’s submission, or a few students’ assign-
ments. This flexibility allows admin and staff to use
this for whatever combination of peer review a course
may call for. This approach also allows for students
to access each others’ information without having to
duplicate data stored on the server, which makes im-
plementing correctness easier.

9 Individual Work and Assign-
ments

Using the submission and assignment classes we al-
ready defined and explained thoroughly, all individ-
ual tasks of submissions and editing are taken care of.
Submitted and uploaded files are treated the same as
those submitted by a group, except they are stored in
the individual student’s directory. If a student wants
to simply edit a file they follow a similar protocol
to that of a Group and utilize MSS to edit files and
update the current server file.

10 Client Server Transfer Pro-
tocol

The file size determines the Trip Time (TT) that we
expect for all packets of a file to transfer. (For trip
time analysis, see Section 16.7 in Evaluation)

If the time of an upload or download takes longer than
TT, we send a kill() instruction in order to stop the
file transfer, we refer to this as timeout. We delete
partial transfers on the server. For user-defined kills,
we maintain two queues. One queue for handling
generic client requests such as uploads, downloads,
inputting grades and another queue for maintaining
a kill switch. The kill switch is triggered when we
have the user press cancel on the on the website.
The browser then sends a kill message to the kill
switch queue. This queue always has priority over the
generic requests queue. These queues operate on the
application layer, not interfering with normal TCP,
but rather building on top of it. In the case where
a user is uploading a document, but they close their
laptop before the upload has completed, we ensure
that this process gets killed by the timeout we have
defined above.

If a file transfer is killed by timeout, the user is sent

an error and instructions to resubmit/redownload. In
order to ensure the ordered delivery of large numbers
of packets we use TCP, but refrain from updating our
own system until the entire files have been sent.

By handling the multiple client-server transfer in-
stances above with well-defined behavior integrated
into the transfer protocol, we ensure the correctness
of our system when it kills processes and handles re-
quests from clients over the network.

11 Locking and Concurrency

Figure 5: Concurrent File Upload Locking Procedure

We expect issues with order and erroneous uploads
if/when multiple people or the same person with dif-
ferent tabs attempts to upload files to the same di-
rectory at the same time. To mitigate this problem
GradeHub implements a locking discipline. In order
to minimize the time that files/directories are locked
we allow all uploads to occur simultaneously (1 Fig-
ure 5). Files are initially be uploaded as copies for
the current file. The first file to finish uploading re-
ceives a read/write lock for the directory with the
client attached to the lock (2 Figure 5).

We use MLS (MIT Lock Service) for this action. The
copy becomes the current file, the snapshot for the
old file is recorded in the corresponding submission
object, and the lock is released (3,4 Figure 5). This
lock prevents any reads or writes during this period,
but it ensures correctness. Because the lock is only
held for the duration of slight internal modification
of files, the lock is held for less than a millisecond

9

(a negligible amount of time). In the case of concur-
rent uploads, the other clients who did not receive
the lock have their upload canceled and deleted and
must re-download the newest copy of the file, redo the
changes, and then upload the file again. This process
may seem like a nuisance, but this process is already
in place in MSS and the process ensures correctness
in spite of concurrent uploads.

12 Submission File Type/Size
Checking

Upon submission of a file, CourseHub only allows the
specified file types for the assignment object that are
under the file size limit of 20MB for individual assign-
ments and 100 MB for Group assignments (otherwise
an error is thrown and the user is told to re-submit
their files in a suggested format under the specific file
size limit). This limit can be changed depending on
differing class needs. Staff define the allowable file
types for each specific assignment when creating the
assignment object.

13 Security

Students do not have direct access to the file sys-
tem and only can interface with the server via the
website. Thus students cannot edit grades or tamper
with directories. A possible attack is a multiple sub-
mission/download attack that overloads the system.
To address this possibility we only allow students to
upload/download 15 times an hour which we believe
is very reasonable and given the worst case scenario
of 100MB uploads/downloads our system would take
1/4 second to respond to 15 equivalent uploads given
6GB/sec bandwidth. If this cap is exceeded the cor-
responding staff are alerted via email. Also if stu-
dents exceed their directory capacities, staff are also
notified and the oldest submissions by a student are
deleted while conserving their current active submis-
sions. While it is unfortunate that data is lost in
this scenario, we believe that given responsible use of
directories students should not come close to filling
their storage limits.

14 General System Assump-
tions

Our assumptions include:

1. The staff is not corrupt or malicious.

2. The Design Project members do not try to sab-
otage each other.

3. Unique Kerberos IDs provide a secure method
of delegating permissions to others.

4. Directory and file lookups take constant time.

5. Access to the disk is given only to the Web
Server and the Admin (not students or staff)

6. Our system is able to handle overflow and over-
flow attacks.

15 Use Cases

1. Initialization of 400 student ac-
counts:CourseHub is already setup with the
appropriate group hierarchy for recitations and
tutorials; therefore, what remains is to popu-
late the class with its students, and to assign
the students to a specific recitation and tuto-
rial. See Section 5 Bootstrapping for the pro-
cess. This full process should take on the order
of seconds because it involves simply creating
400 directories and student objects.

2. 400 simultaneous submissions: CourseHub
processes submissions as they come and the
worst case is described in Section 16.5. In
the case where the bandwidth of CourseHub is
matched/exceeded the submissions are added
to a queue and GradeHub records the times-
tamp pertaining to the submission along with
the kerb ID who submitted the file and pro-
cesses the submissions accordingly. A submis-
sion is not timestamped until it is received
on the server side, which makes submissions
immune to student tampering of submission
timestamps.

3. Notification of 400 students simultane-
ously that a grade was posted: See Section
6.4.1 Notification on Grading

4. Regrade of quiz question for one student
in Gradescope: After we have pulled initial
grades from Gradescope, but someone has new
grades entered, we receive a notice from Grade-
scope that a grade has been changed and within
an hour we query Gradescope for the grade and
add it into our system. The grade is added into
our system by using the assignment name as
a identifier to then assign the assignments at-
tributes such as weight and deadlines and then

10

places the grade in the grade database accord-
ingly. On a regrade, we want to alert the stu-
dent of the change, so we send an email when
a change to the grade database is made to the
appropriate student email.

5. A student drops the course late in the
term: We simply remove the entry for the stu-
dent in our Grading Database and then delete
the student’s object containing their informa-
tion, and permissions to certain groups. This
effectively removes them from their group and
when an instructor attempts to look at their
work or information an error is thrown because
they no longer exist.

6. Staff Member is added late in the term:
A staff member’s functionality in our system is
defined entirely by their staff object, meaning
that to get a late-added staff member up to full
speed on the system we only have to instantiate
their staff object properly, which the admin can
easily add.

7. End-of-term spreadsheet for grades: Our
Grade Database is readily able to return this
end-of-term spreadsheet to the course lecturer
with permissions to all grades for all students
in the course at the end of the course with
the grabGradeReport() (see Section 6.3 FOR
USE BY CLIENTS VIA SERVER) function
our server uses to provide these grade reports
to the students and staff contingent on their
permissions.

8. Initialization of a Course in our system:
See Section 5 on Bootstrapping.

16 Evaluation

16.1 What is the communication over-
head of your system?

Between the client and the server we expect to use
the full bandwidth of 6GB/sec in the cases of si-
multaneous uploads by many groups. Otherwise on
average we expect to be using 1GB/sec at max to
handle random submissions and student and staff ac-
tions (we expect non uploading/downloading actions
to take orders of magnitude less bandwidth than up-
loading). Between Gradescope and the server we ex-
pect notifications and data transmission via csv. As
described in section 16.3 csv files should take 10 sec-
onds to upload. Altogether, however Gradescope and
server communication is negligible because it happens

during low traffic times (Section 6.4.1) and the com-
munication overhead comes primarily from the server
client interaction described above.

16.2 On average, how long does it take
a student to upload an assign-
ment to the server?

As covered in Section 16.5 in the worst case with all
DP groups simultaneously uploading videos, upload-
ing can take up to 2 seconds. In the case of 900
students this number becomes 5 seconds.

16.3 On average, how long does it
take for Gradescope grades to be
transferred to the server?

To get Gradescope grades to the disk of the server,
the server calls pullGradescopeGrades(). It takes 10
seconds (as defined by project specs) to export the
CSV from Gradescope to the server. The time it
takes to add new grades from the Gradescope CSV
into our grade database is negligible compared to the
10 sec export time.

16.4 How much data are you storing
on the server?

As explained in Section 3.1 we expect the 6.033 to re-
quire 99GB at maximum. If 500 students were added
to 6.033 then we expect to need 228GB which is still
within the 240GB on disk. 6.033 with 1000 students
or another large course requires more storage on the
server. However, 6.033 is an exception from many
other courses in that it requires large files such as
videos to be uploaded. Therefore, several courses
lacking large file type submissions could be accom-
modated relatively easily.
(900 students * 20MB) + (300 Project-Groups *
700MB) = 228GB

16.5 What parts of your system limit
scale, and what are those limits?

A pressing bottleneck for our system is the network
speed, especially if/when hundreds of students are
trying to upload at the same time. In the worst case
student upload speeds are 600MB/sec, 130 DP groups
are submitting videos of 100MB and we are restricted
to 10 cores. This speed is in line with the 6GB/sec
bandwidth of our sever. Thus 60 people/sec could be
serviced which means a potential slow down of our

11

system that is roughly 2 seconds and not a signifi-
cant bottleneck. If 6.033 became a course of 900 w/
a maximum of 300 DP groups, we expect a slow down
of roughly 5 seconds. This bottleneck does not seem
unreasonable given that everyone will not submit at
the same time and even if they did the system would
recover quickly. If all EECS courses were to use this
system, problems would most likely arise; however
given that most EECS courses do not require video
submissions and if deadlines were staggered, our sys-
tem would be able to accommodate most of the EECS
department. Disk storage capacity is another bottle-
neck, but has been addressed above. If bottlenecks
arise the system will have to include some combina-
tion of additional servers, cores, and storage.

Another bottleneck to web server performance could
be internal lookup time. We store the bulk of our
data to disk, so lookup time is a function of the du-
ration disk lookup takes + the duration of additional
computation. However with a 12GHz clock we do not
expect this to be a bottleneck.

16.6 How long does it take your sys-
tem to deliver all student grades
to the Course Lecturer?

We query all the entries of our grades database, and
copy them in a formatted way into a csv file to de-
liver to the course lecturer. We assume that it takes a
millisecond to pull all the grades for an individual stu-
dent and copy them into a csv file. This is a generous
upper bound. If we then have 600 students in a course
(larger than our 400 student estimate for 6.033) then
this process takes 600 milliseconds. Meaning that
we can return all the requested data in well under 1
second, let alone 10 seconds.

16.7 How long does it take for a
file transfer to be killed, if re-
quested?

Since we maintain two queues in our transfer proto-
col specification, if a user-defined kill is triggered, we
expect the file transfer to get killed in a few millisec-
onds, as the kill switch queue takes priority over the
queue that handles all requests from clients to our
server. In the worst case, the time it takes for the file
transfer to be killed is the Trip Time (TT), which is
proportional to the size of the file. The slowest speeds
of the network are 600MB/sec. We define TT to be
the number of MB*4ms. For example for 100MB of
data we expect the TT to be under 400ms or 2/5 of
a second. This number is a factor of 3 slower than

the slowest expected time and should provide enough
cushion for the slowest network speeds to upload.

16.8 How long does it take to create
all student accounts at the begin-
ning of the semester?

We assume that we have 600 students to create ac-
counts for, and that for each student it cannot take
CourseHub more than 1 millisecond to create an ac-
count. This is a generous assumption because creat-
ing a student account only entails making an entry
in our hash table of student accounts and creating a
textfile to store the entry’s information. Therefore,
the upper bound is 600 milliseconds to create all of
our student accounts.

16.9 How usable will users find your
system?

Uploading/downloading actions have been covered
above (taking at most 5 seconds under the worst cir-
cumstances) and all other actions that clients take
using the website should be resolved within ms due
to the transfer of data on the order of KB using a
6GB/sec transmission. This is reasonable given that
delays on the order of seconds are okay from a hu-
man standpoint. Also the delay does not impinge
upon submission timestamps.

16.10 Additional Metrics

How long does it take to bootstrap the sys-
tem?

The admin should on the order of minutes to
create the file system for the class via the termi-
nal. Assuming the CSV mappings specified in Sec-
tion 5 Bootstrapping have been created, the creation
of the corresponding directories in the file system
and the hash tables we use to maintain course data
should take on the order of milliseconds. This mix-
ture of CourseHub automation and admin manual in-
put leads to a total setup time within minutes which
seems reasonable for the system, and for the valuable
time of admin. The use of CSV files to enter staff
and students into the system minimizes tedious ad-
min work. We tradeoff simplicity for correctness and
user friendliness.

17 Future Work

Future iterations of CourseHub could extend the
system’s functionality. Currently Coursehub’s as-

12

signment and submissions classes accommodate rich
media (.WAV files, .jpg files, etc.) as submission
types and as staff comments; however, CourseHub
could be altered to allow the submission of code
files and their subsequent evaluation via defined test
cases. One would merely have to add the appropriate
attributes to the class abstractions and their respec-
tive functions.

Future work may also focus on redefining the ad-
min role; it may be convenient to access administra-
tor permissions via a remote login to the webserver
as staff and students do. We eschewed this online
access to administrator capabilities to avoid unneces-
sary complications in security, but future work could
be done in this area.

18 Conclusion

CourseHub addresses the problems of the current
6.033 system and has the flexibility to generalize to
other course structures. Furthermore, in its current
form CourseHub uses less than half the total stor-
age available on its server, priming the system for
use across MIT in significantly larger and different
courses.

CourseHub has been designed to be straightforward
for both implementers and system users. Our em-
phasis on modularity resulted in a logical and useful
partitioning of system components(file system, soft-
ware classes, and grade database) lending itself to
ease of implementation. Our emphasis on abstraction
created a system that obscures responsibility from
users, leaving them with a simple user experience.
We designed our system to have well-defined behav-
iors for its many different uses guaranteeing that our
system would behave correctly in each circumstance
(seen in locking and transfer protocols). We have
identified how future work may extend and augment
CourseHub and we emphasize that future work can
be readily built upon the structures we have already
defined. One remaining implementation problem lies
in the creation of the client UI (website) and its basic

integration with the server.

19 Author Contributions

19.1 Alejandro Diaz

Point person for the Introduction; High Level De-
scription; Specified File System; Locking implemen-
tation; Design Choice Arguments; Figures for Grade-
hub diagram, file system, locking, and classes; Eval-
uation; and Peer Review Functionality.

19.2 Katharina Gschwind

Point person for Design of Software Classes; High
Level Description; Design of Course Metadata stor-
age; Design of Student/Staff/Admin Roles and Func-
tionality; Permissions; Notification; Design Choice
Arguments; Evaluation; Security; Conclusion; Writ-
ing and Researching Future Work; and Peer Review
Functionality

19.3 Dylan Lewis

Point person for Grade Database; Grade Database
Diagram; Grade Reporting; Integration with Grade-
scope; Rank Ordered Voting; Client Server Transfer
Protocol; Design Choice Arguments; and Evaluation;

20 Acknowledgements and Ref-
erences

Katrina LaCurts - Course Lecturer
Steve Bauer - Recitation Instructor
Amy Carleton - Tutorial Instructor
Kifle Woldu - Teaching Assistant

We would like to thank the course staff of 6.033
for contributing to our learning of Computer Sys-
tems Engineering concepts and for providing us the
assistance we needed to bring this design to fruition.

Word Count: 6900

13

