
An HFT (High Frequency
Trading) Accelerator

Endrias, Tony, Natnael

Terminology

Stock: a virtual object which someone can sell or buy.

Order: a request to buy or sell a stock.

Exchange: a third party entity that matches groups interested in buying / selling stocks.
Sends market updates to market participants over network.

Automated trading: a computer strategy that connects to an exchange and submits orders
with the objective of making money.

HFT: High frequency trading, a subset of automated trading where the objective is to react
quickly to changes in the market, and submit orders with ultra low latency.

Overview

- HFT firms and market makers need ultra-low latency solutions to quickly:

1) filter the market datastream from the exchange.

2) update their knowledge of the market to keep track of best prices for stocks
(building an order book).

3) Submit trades to the exchange based on the information.

Our Objective

- HFT companies are currently moving in the direction of using FPGAs to replace their
current software system.

- 3rd party companies offer latencies of around 300 ns for each of step 1 and step 2. 3
depends on the complexity of the trading strategy.

- We will build a FPGA implementation of HFT for low latency and high throughput and
see how close we can get to state of the art taking into account our constrained
resources.

Planning / Setup

- We will connect the FPGA with our laptop over ethernet, and have a script that sends
market data using the exchange protocol over TCP.

- The FPGA will use the ethernet IP stack to process the packets send from our laptop.
- It will output the orders it wants to put on the market, and will send the state of the

order book periodically over UART to our laptop.
- For our basic implementation, we will use UART instead of ethernet / TCP.

Block diagram

Ethernet
IP (TCP) Parser Book

Builder

Order
Generation
over
Ethernet to
laptop

Order Book

Trading
Strategy:
Minimal
Risk

Send Order
Book
Periodically
over UART
to laptop

VGA
display

Risk
computation

Laptop
Script

Ethernet IP
- Microblaze IP provided by Xilinx.
- Provides soft core processor to interface over AXI protocol.
- Implements tcp/ip stack and netty gritty details of network communication over

ethernet.

Parser

- Parses Nasdaq ITCH protocol based messages. Messages detail the time evolution of
the state of the exchange.

- Messages consumed through communicating with Microblaze IP over AXI protocol.
- Passes relevant information to book builder module.

Order Book Building
- Want FPGA to maintain the current state of the market -- a list of best prices for buying (bid) / selling

(asks) for multiple stocks.
- Maintains price ladders (from lowest to highest price for the stock).
- Receives updates from parser about new orders, and cancels.
- Needs to be low latency and have low space storage (<500 kb) to fit in the constraints of the nexus

FPGA.

Operations

Operations

//order_id

Operations

Implementation

Code will be parametrized by number of stocks, and price ladders.

An array to represent the different price levels, and hashtable of all the orders to support
quick removal from a level given an order id.

The current state of the order book will stored in BRAM.

Output best buy / sell price for each stock to the trading Module.

Block Diagram for single symbol

Add Order

Cancel Order

Potentially
other
interfaces

Order Book

Hash
Table

BRAM

FIFO

[15:0] id
[15:0] price

[15:0] id

[15:0] best_bid
[15:0] best_ask
 r_order
 r_cancel
r_best_price
[7:0] seq_num

[15:0] id [15:0] key

Challenges

Implementing a fast hash table and queue in FPGA -- will have to be pipelined as it will
require multiple memory reads. Possibilities: cuckoo hashing, quadratic probing.

Minimizing space utilization -- the exchange sends 8 bytes for order id and price, and we
have to map that to an 16 bit space so that we can fit it on FPGA.

(The order book max size is 2^16 * 32 bits which is 262 kb, we will try increasing this
depending on resource usage).

Multiple companies specialize in making a fast order book, so a lot of room to optimize
latency.

Trading Logic

- Want FPGA to quickly update risk (for compliance and other reasons). Latency
sensitive: wΣw, which is effectively give new observation v: 2(v^Tw).

- Might want FPGA to quickly rebalance the portfolio to minimize risk. Less latency
sensitive, but still preferably fast. Cannot take up too much area.

Trading Logic Block
Diagram

Covariance Matrix
Estimate Update
(Vector Outer
Product)

Normalized
Return Vector
Update (Fixed
Point Division)

Real Time Risk
Calculation (vector
dot product)

Hex Segment
Decimal Display
of Risk and PNL

Covariance matrix
inversion and solve
linear system

Relative Position
Update (Solution
subtract current
relative positions)

Reg:
Current
Positions

Reg:
Covarian
ce Matrix
Estimate

Reg: Latest
Price

Reg: Delayed
Price

Execution
Engine

[15:0]v[7:0]

[15:0]cov[63:0]

[15:0]c
ov[63:
0]

[15:0]p1[7:0] [15:0]p2[7:0]

[15:0]v[
7:0]

[15:0]w
[7:0]

Key trading logic

[15:0]w
[7:0]

[15:0]w
[7:0]

[15:0]w
[7:0]

Inverting an 8 by 8 matrix

1

2 3

1 2 7

3 5 6 8

1 4 5 7 9

2 3 4 6 8 10

1 2 3 5 7 9 11

● We would like to obtain inv(𝚺)1
● This is equivalent to inv(R)1, where R as

in 𝚺=QR. In other words, we would like to
do fast QR decomposition.

● We will use Givens rotation method,
which minimizes DSP usage (given the
Artix only has 240 DSPs)

● This method zeros out an entry of the
matrix at a time to produce an upper
triangular matrix (R), by rotating two rows
in conjunction.

● We can parallelize parts of it by picking
disjoint two rows, as indicated in the
table, where each number corresponds
to a stage of the rotation process.

Cordic for matrix inversion

FSM Controller
(basically a
programmable 64
by 12 16bit
crossbar, programs
accesses to
covariance matrix
depending on
algorithm stage)

AXI
carte
sian
I/O
(12 *
16bit
s)

8 by 8 register
array to store the
updated
covariance matrix

Latency estimates

- Fully pipelined CORDIC IP has a latency of 16 cycles for 16 bit input, and a throughput
of one output per cycle

- The rotation cannot begin until the arctan is done. This suggests a latency of 16 + 16 +
x for each stage, where x is the length of the longest row to be rotated in the stage. (x
< 8)

- Therefore, it takes about 400 cycles to perform the matrix inversion (assuming no
additional pipelining in the control FSM), which suggests a latency of around 4
microseconds.

- Then we will need to solve the resulting linear system, which is upper triangular. This
can be done quite simply. The latency is 8 times the latency of the divider.

Timeline

11/12

Tony: implement matrix
inversion module and test
bench in verilog to get
resource estimate

Endrias: implement order
book software
implementation, complete
high level microarchitecture
design with resource
estimates

Natnael: detailed FSM
diagram of how the parser
works, have testbench over
UART

11/19

Tony: functionally debug
matrix inversion module and
get updated resource
estimates

Endrias: implement first-pass
verilog module with test
bench

Natnael: implement parser
module with test bench

11/26

12/05

Finish performance
optimization.

Tony: implement rest of the
risk computations, trade
updates, etc.

Endrias: debug order book
verilog implementation, start
looking at performance
optimization

Natnael: debug parser module
and start performance
optimization

(Implicit Integration)

